~~~~~~~~~~~~~~~~~~~~~~~~ty~~~~~~~~~~~~~~~~~~~~

Posted on


~~~~~~~~~~~~~~~~~~~~~~~~ty~~~~~~~~~~~~~~~~~~~~

‹RECTANGLE ∥ PARALLELOGRAM›

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\large\rm{❛PROBLEM❜}

  • 1.) Given: ABCD is a rectangle. Find the measure of its diagonal if AC = 4x – 30 and BD = x.
  • 2.) Given: STUV is a parallelogram. Find the measure of ∠SVU.

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\large\rm{❛ANSWER❜}

  • \large\rm{1.) \:  \: m∠BD \: = \: 10}
  • \large\rm{2.) \: m∠SVU \: = \: 124°}

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\large\rm{❛GIVEN❜}

  • \small\rm{m∠AC \: = \: 4x - 30}
  • \small\rm{m∠BD \: = \: x}
  • \small\rm{m∠V \: = \: 12x + 4}
  • \small\rm{m∠T \: = \: 13x - 6}

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\large\rm{❛SOLUTION❜}

1.) Given: ABCD is a rectangle. Find the measure of its diagonal if AC = 4x – 30 and BD = x.

↳ We know that opposite sides are congruent so this means.

  • \small\rm{AC \: \cong \: BD}

↳ Substitute the given measure.

  • \small\rm{4x \:  -  \: 30 \:  =  \: x}

↳ Transpose

  • \small\rm{4x \:  -  \: x \:  =  \: 30}

↳ Divide both sides by 3

  • \small\rm{ \frac{\cancel3x}{ \cancel3} =  \frac{30}{3}} \\
  • \small\rm{x \: = \: 10}

↳ Since the value of x is 10, now we need to find the measure of its diagonal so we need to find it by m∠AC and set x to 10.

  • \small\rm{m∠AC \: = \: 4x - 30}
  • \small\rm{m∠BD \: = \: 4(10) - 30}
  • \small\rm{m∠BD \: = \: 40 - 30}
  • \small\rm\color{olive}{m∠BD \: = \: 10}

∴ Therefore, the measure of its diagonal is 10.

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

2.) Given: STUV is a parallelogram. Find the measure of ∠SVU.

↳ We know that opposite sides are congruent so this means.

  • \small\rm{m∠V \: \cong \:m∠T}

↳ Substitute the given measure.

  • \small\rm{12x + 4 \:  =  \: 13x \:  -  \: 6}

↳ Transpose

  • \small\rm{12x  -  13x \:  =  \: 4 \:   +   \: 6}

↳ Add and Subtract the given value.

  • \small\rm{1x \:  =  \: 10}

↳ Divide both sides by 1

  • \small\rm{ \frac{\cancel1x}{\cancel1}  =  \frac{10}{1}} \\
  •  \small\rm{x \:  =  \: 10}

↳ Now that we take the value of x, we need to take the m∠V then multiply it and set x to 10.

  • \small\rm{m∠V \: = \: 12x + 4}
  • \small\rm{m∠SVU \: = \: 12(10) + 4}
  • \small\rm{m∠SVU \: = \: 120 + 4}
  • \small\rm\color{olive}{m∠SVU \: = \: 124°}

∴ Therefore, the measure angle m∠SVU will be 124°

\tt\color{skyblue}{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

\color{red}{⚘}

Leave a Reply

Your email address will not be published.